Environment Setup
AcuiRT Environment Setup
- Install AIBooster and related packages by referring to the How to set up the environment outside the recommended environment.
DETR Environment Setup
-
Clone the aibooster-examples repository and change the working directory into DETR.
git clone -b 0.4.0 https://github.com/fixstars/aibooster-examples && cd aibooster-examples/intelligence/acuirt/detr/baseline -
Install the packages required by DETR.
pip install -r requirements.txt -
Dataset Preparation
-
Download the evaluation dataset for the COCO Dataset. Please specify an arbitrary path for /path/to/dataset.
wget http://images.cocodataset.org/annotations/annotations_trainval2017.zip
wget http://images.cocodataset.org/zips/val2017.zip
unzip annotations_trainval2017.zip -d /path/to/dataset
unzip val2017.zip -d /path/to/dataset -
Please confirm that the dataset structure is as follows.
coco
├── annotations
│ ├── captions_train2017.json
│ ├── captions_val2017.json
│ ├── instances_train2017.json
│ ├── instances_val2017.json
│ ├── instances_val2017_subset.json
│ ├── person_keypoints_train2017.json
│ └── person_keypoints_val2017.json
└── val2017 -
val2017 contains 5000 images, so inference and evaluation take a long time. For simplicity, we will create a subset containing 50 randomly selected images.
python create_subset.py --val_json_path /path/to/dataset/coco/annotations/instances_val2017.json --output_json_path /path/to/dataset/coco/annotatinos/instances_val2017_subset.json -
-
Download the pre-trained weights.
wget https://dl.fbaipublicfiles.com/detr/detr-r101-2c7b67e5.pth -
Run inference.
python main.py --batch_size 1 --no_aux_loss --eval --backbone resnet101 --resume ./detr-r101-2c7b67e5.pth --coco_path /path/to/dataset/cocoIt will be successful if a recognition accuracy log like the one below is output.
IoU metric: bbox
Average Precision (AP) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.531
Average Precision (AP) @[ IoU=0.50 | area= all | maxDets=100 ] = 0.727
Average Precision (AP) @[ IoU=0.75 | area= all | maxDets=100 ] = 0.560
Average Precision (AP) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.300
Average Precision (AP) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.553
Average Precision (AP) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.720
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 1 ] = 0.428
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets= 10 ] = 0.625
Average Recall (AR) @[ IoU=0.50:0.95 | area= all | maxDets=100 ] = 0.648
Average Recall (AR) @[ IoU=0.50:0.95 | area= small | maxDets=100 ] = 0.394
Average Recall (AR) @[ IoU=0.50:0.95 | area=medium | maxDets=100 ] = 0.655
Average Recall (AR) @[ IoU=0.50:0.95 | area= large | maxDets=100 ] = 0.814