intelligence.zenith_tune.tuners.function_runtime
FunctionRuntimeTuner Objects
class FunctionRuntimeTuner(GeneralTuner)
A tuner for runtime optimization.
__init__
def __init__(output_dir: str = "outputs",
study_name: Optional[str] = None,
db_path: Optional[str] = None,
sampler: Optional[BaseSampler] = None,
pruner: Optional[BasePruner] = None,
auto_pruners: Optional[List[AutoPrunerBase]] = None,
maximize: bool = False) -> None
Initialize the FunctionRuntimeTuner.
Arguments:
output_dirstr - The directory to store the study results. Defaults to "outputs".study_namestr - The name of the study. Defaults to None.db_pathOptional[str] - The path to the database file. Defaults to None.samplerOptional[BaseSampler] - The sampler to use. Defaults to None.prunerOptional[BasePruner] - The pruner to use. Defaults to None.auto_prunersOptional[List[AutoPrunerBase]] - List of auto pruners to monitor during execution. Defaults to None.maximizebool - Whether to maximize the objective function. Defaults to False.
optimize
def optimize(
func: Callable[..., Any],
n_trials: int,
default_params: Optional[Dict[str, Any]] = None
) -> Tuple[float, Dict[str, Any]]
Optimize the given objective function using Optuna.
Arguments:
funcCallable[..., Any] - The objective function to optimize.n_trialsint - The number of trials to run.default_paramsOptional[Dict[str, Any]] - Default parameters to use for the optimization.
Returns:
Tuple[float, Dict[str, Any]]: The best value and parameters found during optimization.