Skip to main content
Version: v2509

Module-specific conversion

  • In AcuiRT, there are multiple options for performing module conversion.
  • rt_mode specifies the conversion method for each module. In the current version, the following conversion methods are supported.
    • onnx: After exporting in ONNX format, convert to a TensorRT model
    • torch2trt: Convert directly to a TensorRT model using torch2trt
  • When the auto flag is enabled, AcuiRT automatically falls back to conversions within the module and converts the largest convertible module.

Example Configuration

  • The following example assumes a model with two modules, module_1 and module_2.
  • After outputting module_1 in ONNX format, it applies int8 and fp16 quantization and converts it to a TensorRT model. If the conversion of module_1 fails, it automatically attempts conversion on module_1’s child modules (fallback).
  • module_2 uses conversion via torch2trt and only performs fp16 quantization. If the conversion of module_2 fails, no conversion will be performed on its child modules.
model = dict(
module_1 = dict(
rt_mode="onnx",
int8=True,
fp16=True,
auto=True,
),
module_2 = dict(
rt_mode="torch2trt",
int8=False,
fp16=True,
)
)