convert.convert
convert_model_kernel
def convert_model_kernel(model: nn.Module, config: dict, export_path: str,
skip_exist: bool, argument_infos: Any,
logger: Any) -> dict
Convert model based on configuration settings.
Arguments:
model
nn.Module - PyTorch model to convertconfig
dict - Conversion configuration dictionaryexport_path
str - Base path for exporting converted modelskip_exist
bool - Whether to skip existing conversion filesargument_infos
Any - Input argument information for conversionlogger
Any - Logger object for tracking conversion progress
Returns:
dict
- Conversion summary with updated configuration
convert_model
def convert_model(model: nn.Module,
config: dict,
export_path: str,
skip_exist: bool,
data_loader: Union[Iterable[Union[Tuple[Tuple, Dict], Dict]],
None] = None,
data_loader_post_process: Union[Callable, None] = None,
logger=None)
Convert model with preprocessing and postprocessing.
Arguments:
model
nn.Module - PyTorch model to convertconfig
dict - Conversion configuration dictionaryexport_path
str - Base path for exporting converted modelskip_exist
bool - Whether to skip existing conversion filesdata_loader
Union[Iterable[Dict], None], optional - Data loader for preprocessing. Defaults to None.data_loader_post_process
Union[Callable, None], optional - Postprocessing function for data loader. Defaults to None.logger
optional - Logger object for tracking conversion progress. Defaults to None.
Returns:
dict
- Conversion configuration dictionary